library(foreign)
library(regsim)

world_data <- read.dta("http://uclspp.github.io/PUBLG100/data/QoG2012.dta")
model <- lm(undp_hdi ~ wbgi_cce + former_col + wbgi_cce:former_col, data = world_data)
summary(model)
## 
## Call:
## lm(formula = undp_hdi ~ wbgi_cce + former_col + wbgi_cce:former_col, 
##     data = world_data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.38655 -0.04182  0.01290  0.06983  0.27860 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          0.78524    0.01685  46.602  < 2e-16 ***
## wbgi_cce             0.07872    0.01328   5.926 1.67e-08 ***
## former_col          -0.11530    0.02078  -5.549 1.08e-07 ***
## wbgi_cce:former_col  0.05279    0.01992   2.650  0.00881 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1207 on 171 degrees of freedom
##   (19 observations deleted due to missingness)
## Multiple R-squared:  0.5589, Adjusted R-squared:  0.5512 
## F-statistic: 72.23 on 3 and 171 DF,  p-value: < 2.2e-16
x <- list(former_col = 0:1, wbgi_cce = -2:3)

sim <- regsim(model, x)
summary(sim)
##            Profile 1
## former_col         0
## wbgi_cce          -2
## 
##         2.5%       50%     97.5%
## p1 0.5517317 0.6276641 0.6947622
## --------------------------------
## 
##            Profile 2
## former_col         1
## wbgi_cce          -2
## 
##         2.5%       50%     97.5%
## p2 0.3472378 0.4059664 0.4589139
## --------------------------------
## 
##            Profile 3
## former_col         0
## wbgi_cce          -1
## 
##         2.5%       50%    97.5%
## p3 0.6571104 0.7061871 0.753638
## -------------------------------
## 
##            Profile 4
## former_col         1
## wbgi_cce          -1
## 
##         2.5%       50%    97.5%
## p4 0.5067297 0.5379558 0.568405
## -------------------------------
## 
##            Profile 5
## former_col         0
## wbgi_cce           0
## 
##         2.5%      50%     97.5%
## p5 0.7535239 0.785475 0.8176957
## -------------------------------
## 
##            Profile 6
## former_col         1
## wbgi_cce           0
## 
##         2.5%       50%     97.5%
## p6 0.6461712 0.6702621 0.6934673
## --------------------------------
## 
##            Profile 7
## former_col         0
## wbgi_cce           1
## 
##         2.5%       50%    97.5%
## p7 0.8334638 0.8640469 0.896834
## -------------------------------
## 
##            Profile 8
## former_col         1
## wbgi_cce           1
## 
##         2.5%       50%     97.5%
## p8 0.7581209 0.8012332 0.8440396
## --------------------------------
## 
##            Profile 9
## former_col         0
## wbgi_cce           2
## 
##         2.5%       50%     97.5%
## p9 0.8956883 0.9440054 0.9910328
## --------------------------------
## 
##            Profile 10
## former_col          1
## wbgi_cce            2
## 
##          2.5%       50%    97.5%
## p10 0.8657216 0.9336028 1.006246
## --------------------------------
## 
##            Profile 11
## former_col          0
## wbgi_cce            3
## 
##          2.5%      50%    97.5%
## p11 0.9546154 1.022979 1.092339
## -------------------------------
## 
##            Profile 12
## former_col          1
## wbgi_cce            3
## 
##          2.5%      50%    97.5%
## p12 0.9717654 1.064757 1.169262
## -------------------------------
plot(sim, ~wbgi_cce + former_col, xlab = "Corruption Control")